Polytomous Testlet Response Models for Technology-Enhanced Innovative Items: Implications on Model Fit and Trait Inference

Author:

Kang Hyeon-Ah1ORCID,Han Suhwa1,Kim Doyoung2,Kao Shu-Chuan2

Affiliation:

1. University of Texas at Austin, Austin, TX, USA

2. National Council of State Boards of Nursing, Chicago, IL, USA

Abstract

The development of technology-enhanced innovative items calls for practical models that can describe polytomous testlet items. In this study, we evaluate four measurement models that can characterize polytomous items administered in testlets: (a) generalized partial credit model (GPCM), (b) testlet-as-a-polytomous-item model (TPIM), (c) random-effect testlet model (RTM), and (d) fixed-effect testlet model (FTM). Using data from GPCM, FTM, and RTM, we examine performance of the scoring models in multiple aspects: relative model fit, absolute item fit, significance of testlet effects, parameter recovery, and classification accuracy. The empirical analysis suggests that relative performance of the models varies substantially depending on the testlet-effect type, effect size, and trait estimator. When testlets had no or fixed effects, GPCM and FTM led to most desirable measurement outcomes. When testlets had random interaction effects, RTM demonstrated best model fit and yet showed substantially different performance in the trait recovery depending on the estimator. In particular, the advantage of RTM as a scoring model was discernable only when there existed strong random effects and the trait levels were estimated with Bayes priors. In other settings, the simpler models (i.e., GPCM, FTM) performed better or comparably. The study also revealed that polytomous scoring of testlet items has limited prospect as a functional scoring method. Based on the outcomes of the empirical evaluation, we provide practical guidelines for choosing a measurement model for polytomous innovative items that are administered in testlets.

Funder

National Council of State Boards of Nursing

Publisher

SAGE Publications

Subject

Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education

Reference7 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Handling Measurement Error and Omitted Confounders Considering Informativeness of the Confounding Effect under Mediation Modeling;Structural Equation Modeling: A Multidisciplinary Journal;2024-04-10

2. Location-Matching Adaptive Testing for Polytomous Technology-Enhanced Items;Applied Psychological Measurement;2024-01-16

3. Cognitive Diagnosis Testlet Model for Multiple-Choice Items;Journal of Educational and Behavioral Statistics;2023-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3