Improvement of organoclay dispersion into polystyrene-based nanocomposites by incorporation of SBS and maleic anhydride-grafted SBS

Author:

Dike Ali Sinan1ORCID,Yilmazer Ulku23

Affiliation:

1. Department of Materials Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey

2. Department of Polymer Science and Technology, Middle East Technical University, Ankara, Turkey

3. Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey

Abstract

In this study, organoclay-containing polystyrene (PS)-based nanocomposites were fabricated by extrusion in the presence of thermoplastic elastomer modifiers. Styrene–butadiene–styrene (SBS) rubber was used as the elastomeric compatibilizer and maleic anhydride (MA) was grafted onto SBS rubber at different ratios. Grafting was made via melt blending. Cloisite® 30B was used as the organoclay and it was added to PS and PS/SBS blends using a corotating twin-screw extruder, followed by injection molding. Clay loading was kept constant as 2 wt%, and the elastomer content was varied between 0 and 40 wt% throughout the study. MA grafted SBS enhanced the intercalation/exfoliation of clay layers resulting in higher tensile strength, modulus, elongation at break, and impact strength with respect to neat PS. Composites containing 15 wt% MA grafted SBS displayed the optimum average domain size resulting in the high impact strength without deteriorating the tensile strength and modulus values. Elastomer addition increased the glass transition temperature of the samples due to branching or cross-linking during extrusion. PS and PS/SBS exhibited similar melt flow index values with their organoclay-containing composites. MA acted as a plasticizer and decreased viscosity. Scanning electron microscopy study indicated that dispersion of clay layers was observed at the PS-SBS interphase and also in the elastomer phase. Intercalated and exfoliated structures of organoclay layers were confirmed by X-ray diffraction and transmission electron microscopy analyses.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3