Development and characterization of a recycled nylon fiber reinforced and nano-fly ash hybridized high impact performance polypropylene composite for sustainability

Author:

Maurya Atul Kumar1ORCID,Manik Gaurav1ORCID

Affiliation:

1. Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur, India

Abstract

The pursuit of a renewable and recyclable material to reduce carbon footprint is the need of the hour for a safe and secure future of flora and fauna. This study explores the reinforcement potential of pre-treated recycled nylon fiber (NF) with CaCl2, NaOH and silane in a polypropylene (PP) matrix. Silane coating over the fiber surface was confirmed from FTIR and surface morphology. Interfacial interactions among NF and PP were further strengthened by adding nano-structured cetrimonium bromide (CTAB) treated fly ash (FA). A positive hybridization effect of FA was observed on such hybrid composites, apparent from an increment of ∼29% in tensile, ∼49% in flexural, and ∼970% in notched Izod impact strength. FE-SEM analysis showed good dispersion and distribution of reinforcements into the base matrix, establishing excellent interfacial adhesion. DSC analysis showed an increase in crystallization temperature (∼125°C) and a decrease in melting temperature of all the composites, while TGA confirms a reduction in the activation energy of all the composites.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3