Image capturing, segmentation and data analysis of shredded refuse streams

Author:

Gursch Heimo1ORCID,Schlager Elke1,Thaler Franz2,Waltner Georg2,Ganster Harald3,Rinnhofer Alfred3,Jaschik Malte3,Oberwinkler Christian4,Meisenbichler Reinhard4,Bischof Horst2,Kern Roman1

Affiliation:

1. Know-Center GmbH, Knowledge Discovery, Graz, Austria

2. Institute of Computer Graphics and Vision, Graz University of Technology, Graz, Austria

3. Joanneum Research Forschungsgesellschaft mbH, Digital, Graz, Austria

4. Komptech GmbH, Frohnleiten, Austria

Abstract

Refuse sorting is an important cornerstone of the recycling industry, but ever-changing refuse compositions and the desire to increase recycling rates still pose many unsolved challenges. The digitalisation of refuse sorting plants promises to overcome these challenges by optimising and automatically adapting the sorting process. This publication describes a system for image capturing, segmentation-based refuse recognition and data analysis of shredded refuse streams. The image capturing collects multispectral 2D and 3D images of the refuse streams on conveyor belts. The image recognition performs a semantic segmentation of the images to determine the refuse composition from the 2D images, whereas the 3D images approximate the volumes on the conveyor belts. The semantic segmentation is done by a combined convolutional neural network model, consisting of a foreground–background and a refuse class segmentation. Both models rely on synthetic training data to reduce the necessary amount of manually labelled training data, whereas the final segmentation performance reaches an Intersection over Union of up to 75%. The results of the semantic segmentation and volume estimation are combined with data of the shredding machinery by transforming it into a unified representation. This combined dataset is the basis for estimating the processed refuse masses from the semantic segmentation and volume estimation.

Funder

Future Fund by the State of Styria

Österreichische Forschungsförderungsgesellschaft

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3