Depression Is Associated With Preserved Cortical Thickness Relative to Apathy in Frontotemporal Dementia

Author:

Basavaraju Rakshathi1ORCID,Feng Xinyang2,France Jeanelle1,Huey Edward D.34,Provenzano Frank A.1ORCID

Affiliation:

1. Department of Neurology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Centre, New York, NY, USA

2. Department of Biomedical Engineering, Columbia University Medical Centre, New York, NY, USA

3. Division of Geriatric Psychiatry, Department of Psychiatry, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, and the Gertrude H. Sergievsky Center, Columbia University College of Physicians and Surgeons, New York, NY, USA

4. Division of Aging and Dementia, Department of Neurology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, and the Gertrude H. Sergievsky Center, Columbia University College of Physicians and Surgeons, New York, NY, USA. Feng is now with Research Scientist at Facebook Inc., Menlo Park, CA, USA.

Abstract

Objectives: To understand the differential neuroanatomical substrates underlying apathy and depression in Frontotemporal dementia (FTD). Methods: T1-MRIs and clinical data of patients with behavioral and aphasic variants of FTD were obtained from an open database. Cortical thickness was derived, its association with apathy severity and difference between the depressed and not depressed were examined with appropriate covariates. Results: Apathy severity was significantly associated with cortical thinning of the lateral parts of the right sided frontal, temporal and parietal lobes. The right sided orbitofrontal, parsorbitalis and rostral anterior cingulate cortex were thicker in depressed compared to patients not depressed. Conclusions: Greater thickness of right sided ventromedial and inferior frontal cortex in depression compared to patients without depression suggests a possible requisite of gray matter in this particular area for the manifestation of depression in FTD. This study demonstrates a method for deriving neuroanatomical patterns across non-harmonized neuroimaging data in a neurodegenerative disease.

Publisher

SAGE Publications

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3