Flow diverter surface modifications for aneurysm treatment: A review of the mechanisms and data behind existing technologies

Author:

White Timothy G1ORCID,Santhumayor Brandon A1,Turpin Justin1ORCID,Shah Kevin1ORCID,Toscano Daniel1ORCID,Teron Ina1,Link Thomas1,Patsalides Athos1,Woo Henry H1

Affiliation:

1. Department of Neurosurgery, North Shore University Hospital, Donald and Barbara Zucker School of Medicine, Manhasset, NY, USA

Abstract

Flow diversion (FD) has become a mainstay treatment for large wide-necked aneurysms. Despite excellent safety and efficacy, the risk of thromboembolic complications necessitates the use of dual antiplatelet therapy (DAPT). The use of DAPT makes hemorrhagic complications of stenting carry high morbidity and mortality. Additionally, DAPT usage carries a risk of “nuisance” complications that do not directly impact intracranial circulation but need to be managed nonetheless. To circumvent this issue, the most recent generation of flow diverters have undergone surface modification with various compounds to confer blood compatibility to limit clotting and thrombosis. While these newer generation flow diverters are marketed to enhance ease of deployment, the goal is to eventually facilitate single antiplatelet use with flow diverter treatment. This generation of FDs have potential to expand indications beyond unruptured wide-necked aneurysms to include ruptured intracranial aneurysms without the necessity of DAPT. Currently, no comprehensive review details the molecular mechanisms and pre-clinical and clinical data on these modifications. We seek to fill this gap in the literature by consolidating information on the coating technology for four major FDs currently in clinical use—PipelineTM Flex and Vantage Shield TechnologyTM, FREDTMX, p48/64 hydrophilic coating, and Acandis Dervio® 2heal—to serve as a reference guide in neurointerventional aneurysm treatment. Although the Balt silkTM was one of the first FDs, it is uncoated, thus we will not cover this device in our review. A literature review was performed to obtain information on each coating technology for the major flow diverters currently on the market using international databases (PUBMED, Embase, Medline, Google Scholar). The search criteria used the keywords for each coating technology of interest “phosphorylcholine,” “poly 2-methoxyethyl acrylate,” “hydrophilic polymer coating,” and “fibrin-heparin” Keywords related to the device names “Pipeline Shield,” “Pipeline Shield with Flex Technology,” “FRED,” “FREDX,” “p64,” “p64-HPC,” “Derivo 2heal” were also used. Studies that detailed the mechanism of action of the coating, any pre-clinical studies with surface-modified intravascular devices, and any clinical retrospective series, prospective series, or randomized clinical trials with surface-modified devices for aneurysm treatment were included.

Publisher

SAGE Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3