Design, analysis, and manufacture of a tension–compression self-centering damper based on energy dissipation of pre-stretched superelastic shape memory alloy wires

Author:

Alipour Amin1,Kadkhodaei Mahmoud1,Safaei Mohsen1

Affiliation:

1. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

Superelastic shape memory alloys dissipate significant amount of energy since they recover large transformation strains upon mechanical unloading. Due to their dissipation properties, shape memory alloys can be effectively employed as dampers. Design, simulation, and fabrication of a newly developed superelastic shape memory alloy damper are discussed in this article. To enhance the stroke and dissipation capacity of the proposed damper, a system is implemented which operates more efficiently than a single shape memory alloy wire. Although shape memory alloy wires can only undergo tension, the new system enables the damper to be loaded in both tension and compression. Two damping groups are employed in this mechanism: one of which is activated during tension and the other is activated during compression of the damper. Each damping group consists of two shape memory alloy wires acting in the opposite directions to increase the damping capacity of the system. The mechanical responses of the individual components as well as the assembled damper are simulated. The predicted performance of the damper is then validated through tension/compression tests on the fabricated sample. Numerical and experimental force–displacement curves are also shown to be in a good agreement. The effect of different parameters on damping ratio and dissipated energy of the presented damper is investigated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3