A Unified Beam Finite Element Model for Extension and Shear Piezoelectric Actuation Mechanisms

Author:

Benjeddou A.,Trindade M. A.,Ohayon R.1

Affiliation:

1. Structural Mechanics and Coupled Systems Laboratory, CNAM, 2 rue Conte, 75003, Paris, France

Abstract

This paper presents a finite element model for adaptive sandwich beams to deal with either extension or shear actuation mechanism. The former corresponds to an elastic core sandwiched beam between two transversely polarized active surface layers; whereas, the latter consists of an axially polarized core, sandwiched between two elastic surface layers. For both configurations, an electric field is applied through thickness of the piezoelectric layers. The mechanical model is based on Bernoulli-Euler theory for the surface layers and Timoshenko beam theory for the core. It uses three variables, through-thickness constant deflection, and the mean and relative axial displacements of the core's upper and lower surfaces. Augmented by the bending rotation, these are the only nodal degrees of freedom of the proposed two-node adaptive sandwich beam finite element. The piezoelectric effect is handled through modification of the constitutive equation, when induced electric potential is taken into account, and additional electric forces and moments. The proposed finite element model is validated through static and dynamic analysis of extension and shear actuated, continuous and segmented, cantilever beam configurations. Finite element results show good comparison with those found in the literature, and indicate that the newly defined shear actuation mechanism presents several promising features over conventional extension actuation mechanism, particularly for brittle piezoceramics use and energy dissipation purposes.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 157 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3