Damage Classification Structural Health Monitoring in Bolted Structures Using Time-frequency Techniques

Author:

Chakraborty Debejyo1,Kovvali Narayan2,Jun Wei 3,Papandreou-Suppappola Antonia1,Cochran Douglas1,Chattopadhyay Aditi3

Affiliation:

1. Department of Electrical Engineering, Arizona State University, Tempe, AZ, USA

2. Department of Electrical Engineering, Arizona State University, Tempe, AZ, USA,

3. Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ, USA

Abstract

The analysis, detection, and classification of damage in complex bolted structures is an important component of structural health monitoring. In this article, an advanced signal processing and classification method is introduced based on time-frequency techniques. The time-varying signals collected from sensors are decomposed into linear combinations of highly localized Gaussian functions using the matching pursuit decomposition algorithm. These functions are chosen from a dictionary of time-frequency shifted and scaled versions of an elementary Gaussian basis function. The dictionary is also modified to use real measured data as the basis elements in order to obtain a more parsimonious signal representation. Classification is then achieved by matching the extracted damage features in the time-frequency plane. To further improve classification performance, the information collected from multiple sensors is integrated using a Bayesian sensor fusion approach. Results are presented demonstrating the algorithm performance for classifying signals obtained from various types of fastener failure damage in an aluminum plate.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3