Susceptibility-weighted imaging for stem cell visualization in a rat photothrombotic cerebral infarction model

Author:

Ha Bon Chul1,Jung Jisung1,Kwak Byung Kook1

Affiliation:

1. Department of Radiology, Chung-Ang University Hospital, Seoul, Republic of Korea

Abstract

Background In cell therapy, magnetic resonance imaging (MRI) has been used to visualize superparamagnetic iron oxide (SPIO)-labeled stem cells homing to a lesion. Improving traceability is to utilize the sequence that maximizes sensitivity to the susceptibility effect of SPIO. Purpose To explore the best method by comparing the MRI sequences to visualize mesenchymal stem cells (MSCs) labeled with SPIO. Material and Methods Human bone marrow (hBM)-derived MSCs were labeled by internalization of SPIO nanoparticles. In vitro MRI was performed for the SPIO-labeled hBM-MSCs in tubes with T2-weighted (T2W), T2*-weighted (T2*W), and susceptibility-weighted images (SWI). Contrast-to-noise ratio (CNR) and volumes of dark signal of SPIO-labeled hBM-MSCs were obtained on images of each sequence. Photothrombotic cerebral infarction (PTCI) was induced in eight rats, and 2.5 × 105 SPIO-labeled hBM-MSCs were infused through the tail vein on the third day. In vivo MRI of the rat brain was performed using a 3.0 T MRI on the first, third, seventh, and 14th days. CNRspio was obtained on T2W imaging, T2*W imaging, and SWI. The dark signals were compared with the SPIO-positive cells of Prussian blue staining. Results In vitro MRI of 5 × 105 SPIO-labeled hBM-MSCs showed the CNR and volume of dark signal to be 63, 517 mm3 in SWI, 41, 228 mm3 in T2*W imaging, and 56, 41 mm3 in T2W imaging, respectively. In vivo MRI showed a dark signal surrounding the high signal intensity of PTCI. Pathologically, the dark signals were matched with SPIO-labeled hBM-MSC in the corresponding rat. The dark signal was most prominent in SWI, then T2*W imaging, and finally in T2W imaging ( P <0.05). In SWI, other causes of dark signals were matched with the veins and the choroid plexuses on histopathology. Conclusion SWI can visualize SPIO-labeled hBM-MSCs more sensitively, earlier, and with larger size and greater contrast than T2W imaging and T2*W imaging.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3