Assessment of multi-modal magnetic resonance imaging for glioma based on a deep learning reconstruction approach with the denoising method

Author:

Sun Jun12,Xu Siyao12,Guo Yiding3,Ding Jinli12,Zhuo Zhizheng12,Zhou Dabiao3,Liu Yaou12ORCID

Affiliation:

1. Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China

2. Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing, PR China

3. Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China

Abstract

Background Deep learning reconstruction (DLR) with denoising has been reported as potentially improving the image quality of magnetic resonance imaging (MRI). Multi-modal MRI is a critical non-invasive method for tumor detection, surgery planning, and prognosis assessment; however, the DLR on multi-modal glioma imaging has not been assessed. Purpose To assess multi-modal MRI for glioma based on the DLR method. Material and Methods We assessed multi-modal images of 107 glioma patients (49 preoperative and 58 postoperative). All the images were reconstructed with both DLR and conventional reconstruction methods, encompassing T1-weighted (T1W), contrast-enhanced T1W (CE-T1), T2-weighted (T2W), and T2 fluid-attenuated inversion recovery (T2-FLAIR). The image quality was evaluated using signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and edge sharpness. Visual assessment and diagnostic assessment were performed blindly by neuroradiologists. Results In contrast with conventionally reconstructed images, (residual) tumor SNR for all modalities and tumor to white/gray matter CNR from DLR images were higher in T1W, T2W, and T2-FLAIR sequences. The visual assessment of DLR images demonstrated the superior visualization of tumor in T2W, edema in T2-FLAIR, enhanced tumor and necrosis part in CE-T1, and fewer artifacts in all modalities. Improved diagnostic efficiency and confidence were observed for preoperative cases with DLR images. Conclusion DLR of multi-modal MRI reconstruction prototype for glioma has demonstrated significant improvements in image quality. Moreover, it increased diagnostic efficiency and confidence of glioma.

Funder

Beijing Hospital Management Center Young Talents

China Postdoctoral Science Foundation

Capital Health Development Research Project

Radiographic Standard Database Construction Project

SKY Imaging Research Fund of China Foundation for International Medical Exchange

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3