Machine learning models based on multi-parameter MRI radiomics for prediction of molecular glioblastoma: a new study based on the 2021 World Health Organization classification

Author:

Kong Xin1ORCID,Mao Yu1,Luo Yuqi1,Xi Fengjun1,Li Yan1,Ma Jun1ORCID

Affiliation:

1. Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

Abstract

Background The 2021 World Health Organization (WHO) classification considers a histological low grade glioma with specific molecular characteristics as molecular glioblastoma (mGBM). Accurate identification of mGBM will aid in risk stratification of glioma patients. Purpose To explore the value of machine learning models based on magnetic resonance imaging (MRI) radiomics features in predicting mGBM. Material and Methods In total, 166 patients histologically diagnosed as low-grade diffuse glioma (WHO II and III) were included in the study. Fifty-three cases were reclassified as mGBM based on molecular status. Four dimensionality reduction methods including distance correlation (DC), gradient boosted decision tree (GBDT), least absolute shrinkage and selection operator (LASSO) and minimal redundancy maximal relevance (MRMR) were used to select the optimal signatures. Six machine learning algorithms including support vector machine (SVM), linear discriminant analysis (LDA), neural network (NN), logistic regression (LR), K-nearest neighbour (KNN) and decision tree (DT) were used to develop the classifiers. The relative SD was used to evaluate the stability of the models, and the area under the curve values in the independent test group were used to evaluate their performances. Results NN_DC was determined as the optimal classifier due to the highest area under the curve of 0.891 in the test group. The classification accuracy, sensitivity, specificity, positive predictive value and negative predictive value of NN_DC were 0.915, 0.842, 0.950, 0.889 and 0.927, respectively. Conclusion Machine learning models can predict mGBM non-invasively, which may help to develop personalized treatment strategies for neurosurgeons and provide an effective tool for accurate stratification in clinical trials.

Publisher

SAGE Publications

Subject

Radiology, Nuclear Medicine and imaging,General Medicine,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3