Demonstration of Acetylcholinesterase Molecular Forms in a Continuous Tubular Lysosomal System of Rat Pancreatic Acinar Cells

Author:

Bendayan Moise1,Gisiger Victor1

Affiliation:

1. Department of Pathology and Cell Biology, Université de Montreal, Montreal, Quebec, Canada

Abstract

By applying the highly sensitive cytochemical Gautron's technique, we were able to reveal AChE activity in rat pancreatic acinar cells, particularly at the level of a complex membrane-bound network formed by tubules with varicosities located around the nuclei and close to the basolateral membrane. The Golgi apparatus was devoid of cytochemical reaction beside the trans-Golgi network cisternae, which showed a positive reaction. The RER of some acinar cells also presented a signal, demonstrating their capability of synthesizing AChE. Immunogold using a specific anti-AChE antibody yielded similar results. Double-labeling experiments corroborated the presence of enzyme cytochemical and immunocytochemical signals in the same lysosomal tubular network. Biochemical sedimentation assays confirmed the presence of AChE in acinar cells, which exists as two globular molecular forms, G1 and G4. These results were obtained with pancreatic tissue in situ as well as with isolated acinar cells maintained in culture and devoid of neural elements. The existence of a continuous tubular lysosomal network containing AChE is in agreement with previous reports on acinar and other cell types, and supports a more general hypothesis on dynamic continuities among cell structures. Whether AChE is being secreted by the acinar cells or internalized through this endo-lysosomal system was not defined. However, the capability of the acinar cells to synthesize AChE and to channel it through a tubular system is a good indication that the cells can modulate their cholinergic stimulation for optimal secretion of digestive enzymes.

Publisher

SAGE Publications

Subject

Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3