Clinical Target Volume Auto-Segmentation of Esophageal Cancer for Radiotherapy After Radical Surgery Based on Deep Learning

Author:

Cao Ruifen12ORCID,Pei Xi3,Ge Ning4,Zheng Chunhou12

Affiliation:

1. College of Computer Science and Technology, Anhui University, Hefei, Anhui, China

2. Engineering Research Center of Big Data Application in Private Health Medicine, Fujian Province University, Putian, Fujian, China

3. University of Science and Technology of China, Hefei, Anhui, China

4. The First Affiliated Hospital of USTC West District, Anhui Provincial Cancer Hospital, Hefei, Anhui, China

Abstract

Radiotherapy plays an important role in controlling the local recurrence of esophageal cancer after radical surgery. Segmentation of the clinical target volume is a key step in radiotherapy treatment planning, but it is time-consuming and operator-dependent. This paper introduces a deep dilated convolutional U-network to achieve fast and accurate clinical target volume auto-segmentation of esophageal cancer after radical surgery. The deep dilated convolutional U-network, which integrates the advantages of dilated convolution and the U-network, is an end-to-end architecture that enables rapid training and testing. A dilated convolution module for extracting multiscale context features containing the original information on fine texture and boundaries is integrated into the U-network architecture to avoid information loss due to down-sampling and improve the segmentation accuracy. In addition, batch normalization is added to the deep dilated convolutional U-network for fast and stable convergence. In the present study, the training and validation loss tended to be stable after 40 training epochs. This deep dilated convolutional U-network model was able to segment the clinical target volume with an overall mean Dice similarity coefficient of 86.7% and a respective 95% Hausdorff distance of 37.4 mm, indicating reasonable volume overlap of the auto-segmented and manual contours. The mean Cohen kappa coefficient was 0.863, indicating that the deep dilated convolutional U-network was robust. Comparisons with the U-network and attention U-network showed that the overall performance of the deep dilated convolutional U-network was best for the Dice similarity coefficient, 95% Hausdorff distance, and Cohen kappa coefficient. The test time for segmentation of the clinical target volume was approximately 25 seconds per patient. This deep dilated convolutional U-network could be applied in the clinical setting to save time in delineation and improve the consistency of contouring.

Funder

Natural Science Foundation of Anhui Province

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3