The Potential Transcriptomic and Metabolomic Mechanisms of ATO and ATRA in Treatment of FLT3-ITD Acute Myeloid Leukemia

Author:

Peng Chun-Jin1ORCID,Fan Zhong1ORCID,Luo Jie-Si1,Wang Li-Na1,Li Yu1,Liang Cong1,Zhang Xiao-Li1,Luo Xue-Qun1,Huang Li-Bin1,Tang Yan-Lai1

Affiliation:

1. Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China

Abstract

Background Acute myeloid leukemia (AML) with Fms-like tyrosine kinase 3 gene internal tandem duplication (FLT3-ITD) mutations has a poor prognosis. The combination of arsenic trioxide (ATO) and all-trans retinoic acid (ATRA) has a synergistic killing effect on leukemia cells with FLT3-ITD mutation. However, the mechanism, especially the changes of gene expression and metabolic activity remain unclear. Here we explore the transcriptome and metabolomics changes of FLT3-ITD AML cells treated with ATO/ATRA. Methods RNA-seq was used to identify differential expressed genes (DEGs), and ultra-high performance liquid chromatography-quadrupole electrostatic field orbital trap mass spectrometry (UHPLC-QE-MS) nontargeted metabolomics method was used to screen out the differential metabolites in FLT3-ITD mutant cell lines treated with ATRA and ATO. KEGG pathway database was utilized for pathway exploration and Seahorse XF24 was used to detect extracellular acidification rate (ECAR). Metabolic polymerase chain reaction (PCR) array and real-time quantitative PCR (RT-qPCR) were used to detect mRNA levels of key metabolic genes of glycolysis and fatty acid after drug treatment. Results A total of 3873 DEGs were identified and enriched in 281 Gene Ontology (GO) terms, among which 210 were related to biological processes, 43 were related to cellular components, and 28 were related to molecular functions. Besides, 1794 and 927 differential metabolites were screened in positive and negative ion mode separately, and 59 different metabolic pathways were involved, including alanine-aspartate-glutamate metabolic pathway, arginine, and proline metabolic pathway, glycerophospholipid metabolic pathways, etc. According to KEGG Pathway analysis of transcriptome combined with metabolome, glycolysis/gluconeogenesis pathway and fatty acid metabolism pathway were significantly founded enriched. ATRA + ATO may inhibit the glycolysis of FLT3-ITD AML cells by inhibiting FLT3 and its downstream AKT/HK2-VDAC1 signaling pathway. Conclusions The gene transcription profile and metabolites of FLT3-ITD mutant cells changes significantly after treatment, which might be related to the anti-FLT3-ITD AML effect. The screened DEGs, differential metabolites pathway are helpful in studying the mechanism of anti-leukemia effects and drug targets.

Funder

the Science and Technology Planning Project of Guangdong Province, China

the Basic and Applied Basic Research Project of Guangdong Province, China

the Youth Talent Promotion Project of Guangzhou Association for Science and Technology, China

the Grant Award from the Terry Fox Foundation, Canada

the Shenzhen Fundamental Research Program

the Science and Technology Planning Project of Guangzhou, China

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3