Metabolic Profiling of Human Gastric Cancer Cells Treated With Salazosulfapyridine

Author:

Takizawa Kohei12ORCID,Muramatsu Koji3,Maruyama Kouji4,Urakami Kenichi5,Sugino Takashi3,Kusuhara Masatoshi6,Yamaguchi Ken7,Ono Hiroyuki1,Kitagawa Yuko2

Affiliation:

1. Division of Endoscopy, Shizuoka Cancer Center, Sunto-gun, Shizuoka, Japan

2. Department of Surgery, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan

3. Division of Pathology, Shizuoka Cancer Centre, Sunto-gun, Shizuoka, Japan

4. Experimental Animal Facility, Shizuoka Cancer Centre, Sunto-gun, Shizuoka, Japan

5. Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, Japan

6. Regional Resources Division, Shizuoka Cancer Center Research Institute, Sunto-gun, Shizuoka, Japan

7. Shizuoka Cancer Center, Sunto-gun, Shizuoka, Japan

Abstract

Purpose:The adhesion molecule cluster of differentiation 44v9 interacts with and stabilizes the cystine/glutamate exchanger protein, which functions as a transporter of cystine. Stabilized cystine/glutamate exchanger increases extracellular cystine uptake and enhances glutathione production. Augmented levels of reduced glutathione mitigate reactive oxygen species and protect cancer cells from apoptosis. Salazosulfapyridine blocks cystine/glutamate exchanger activity and mitigates the supply of cystine to increase intracellular ROS production, thereby increasing cell susceptibility to apoptosis. This enhances the effect of anticancer drugs such as cisplatin. Currently, salazosulfapyridine is being developed as a promising anticancer agent. In the present study, we elucidated the molecular mechanism associated with salazosulfapyridine by investigating the salazosulfapyridine-induced changes in glutathione metabolism in cultured gastric cancer cell lines.Methods:The effect of salazosulfapyridine treatment on glutathione metabolism was investigated in 4 gastric cancer (AGS, MKN1, MKN45, and MKN74) and 2 colorectal cancer (HCT15 and HCT116) cell lines using metabolomic analyses. In addition, the effect of inhibition of the reduced form of nicotinamide adenine dinucleotide phosphate by 2-deoxyglucose on glutathione metabolism was evaluated.Results:Under hypoxia, enhanced glycolysis resulted in lactate accumulation with an associated reduction in nicotinamide adenine dinucleotide phosphate. Salazosulfapyridine treatment decreased the cysteine content and inhibited the formation of glutathione. Combined treatment with salazosulfapyridine and 2-deoxyglucose significantly inhibited cell proliferation. 2-Deoxyglucose, an inhibitor of glycolysis, depleted nicotinamide adenine dinucleotide phosphate required for the formation of glutathione.Conclusions:Our results indicate that in cancer cells having a predominant glycolytic pathway, metabolomic analyses under hypoxic conditions enable the profiling of global metabolism. In addition, inhibiting the supply of nicotinamide adenine dinucleotide phosphate by blocking glycolysis is a potential treatment strategy for cancer, in addition to cystine blockade by salazosulfapyridine.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3