A Competing Risk Nomogram for Prediction of Prognosis in Patients With Primary Squamous Cell Thyroid Carcinoma

Author:

Tian Ye1,He Lei2,Zhang Bin2,Deng Linfeng2,Wang Juan2ORCID

Affiliation:

1. Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

2. Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Abstract

Objective: Primary squamous cell thyroid carcinoma (PSCTC) is an extremely rare carcinoma, accounting for less than 1% of all thyroid carcinomas. However, the factors contributing to PSCTC outcomes remain unclear. This study aimed to identify the prognostic factors and develop a prognostic predictive model for patients with PSCTC. Methods: The analysis included patients diagnosed with thyroid carcinoma between 1975 and 2016 from the Surveillance, Epidemiology, and End Results database. Prognostic differences among the 5 pathological types of thyroid carcinomas were analyzed. To determine prognostic factors in PSCTC patients, the Cox regression model and Fine–Gray competing risk model were utilized. Based on the Fine–Gray competing risk model, a nomogram was established for predicting the prognosis of patients with PSCTC. Results: A total of 198,757 thyroid carcinoma patients, including 218 PSCTC patients, were identified. We found that PSCTC and anaplastic thyroid cancer had the worst prognosis among the 5 pathological types of thyroid carcinoma ( P < .001). According to univariate and multivariate Cox regression analyses, age (71-95 years) was an independent risk factor for poorer overall survival and disease-specific survival in PSCTC patients. Using Fine–Gray regression analysis, the total number of in situ/malignant tumors for patient (Number 1) (≥2) was identified as an independent protective factor for prognosis of PSCTC. The area under the curve, the concordance index (C-index), calibration curves and decision curve analysis revealed that the nomogram was capable of predicting the prognosis of PSCTC patients accurately. Conclusion: The competing risk nomogram is highly accurate in predicting prognosis for patients with PSCTC, which may help clinicians to optimize individualized treatment decisions.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3