Targeted Knockdown of Macrophage Migration Inhibitory Factor Enhances UVB Irradiation-Induced Apoptosis Via Increasing ROS Generation in Oral Squamous Cell Carcinoma

Author:

Chen Tian1,Chen Qibing2,Li Fen3,Zeng Manli4,Wang Bingru1,Huang Shiyong5,Chen Shiming13,Tao Zezhang13ORCID

Affiliation:

1. Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China

2. Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China

3. Head and Neck Surgery, Institute of Otolaryngology, Renmin Hospital of Wuhan University, Wuhan, P.R. China

4. Department of Otolaryngology-Head and Neck Surgery, Ezhou Central Hospital, Ezhou, Hubei, P.R. China

5. Department of Otolaryngology, Head and Neck Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, P.R. China

Abstract

Objectives: We investigated the effects of macrophage migration inhibitory factor (MIF) knockdown or overexpression combined with ultraviolet radiation B (UVB) irradiation on cell proliferation and apoptosis of oral squamous cell carcinoma (OSCC). Methods: MIF expression in OSCC and adjacent tissues was detected by immunohistochemistry. MIF expression in human immortalized oral epithelial cells (HIOEC) and OSCC cells was detected by western blotting. MIF was knocked down or overexpressed in OSCC cell lines (SCC-25 and CAL-27). OSCC cells were set up into control (CON), MIF overexpression/knockdown (oeMIF/shMIF), CON + UVB, and oeMIF + UVB/shMIF + UVB groups based on their exposure to UVB irradiation. Cell line proliferation was studied using a cell counting kit-8 (CCK-8) and colony formation assays. Flow cytometry was applied for determination of apoptosis, cell cycle, reactive oxygen species (ROS) abundance, and mitochondrial membrane potential. Apoptosis-related proteins were assayed by western blotting. Results: The expression of MIF was significantly higher in OSCC tissues and cell lines than in adjacent tissues and HIOEC. MIF knockdown accompanied by UVB irradiation significantly hampered cell viability and proliferation compared to MIF knockdown or UVB irradiation alone. Western blotting and flow cytometry showed that MIF knockdown combined with UVB irradiation not only induced apoptosis via the mitochondrial pathway but also mediated the cell cycle. Flow cytometry showed that ROS and mitochondrial membrane potential depolarization were increased in the combination treatment groups compared with the mono-treatment groups. Additionally, the ROS scavenger N-acetylcysteine significantly attenuated MIF knockdown combined with UVB irradiation-induced apoptosis and reversed MIF knockdown combined with UVB irradiation-induced MAPK activation. Conclusion: MIF knockdown combined with UVB irradiation significantly inhibited the proliferation of OSCC cells. MIF was involved in UVB-induced ROS generation and enhanced UVB irradiation-induced mitochondria-dependent apoptosis of OSCC cells by activating the MAPK pathway. This suggests that MIF-targeted therapy combined with UVB irradiation may be a novel approach for treating OSCC.

Funder

National Natural Science Foundation of China

Renmin Hospital of Wuhan University

Health Commission of Hubei Province

Natural Science Foundation of Hubei Province

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3