Low-velocity Impact Response of High-performance Aluminum Foam Sandwich Structures

Author:

Kiratisaevee H.1,Cantwell W. J.2

Affiliation:

1. Department of Engineering, University of Liverpool, L69 3GH, United Kingdom

2. Department of Engineering, University of Liverpool, L69 3GH, United Kingdom,

Abstract

The impact response of a range of novel sandwich structures based on fiber-reinforced thermoplastic and fiber-metal laminate (FML) skins is studied. Indentation tests on these structures show that the indentation constants in a generalized indentation law exhibit a rate-sensitive response over the range of loading conditions examined here. Low-velocity impact tests show that these systems are capable of absorbing energy through localized plastic deformation and crushing in the metal core. An energy-balance model accounting for energy dissipation in bending, shear, and indentation effects is used to predict the maximum force during the impact event. It is found that the model accurately predicts the low-velocity impact response of the plain sandwich structures up to energies close to 30 J. In contrast, the model is only capable of predicting the low-energy response of the FML sandwich structures (typically up to 2 J). At higher energies, a horizontal shear crack initiates in the metal core causing the maximum force to drop below that predicted by the model. Using an energy-partitioning approach, it is shown that indentation effects account for over half of the energy absorbed in the FML-based sandwich structures.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3