Bioplastic based on starch and cellulose nanocrystals from rice straw

Author:

Agustin Melissa B1,Ahmmad Bashir2,Alonzo Shanna Marie M1,Patriana Famille M1

Affiliation:

1. Department of Chemistry, College of Arts and Sciences, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines

2. Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan

Abstract

Bioplastic based on starch as the matrix and cellulose nanocrystals from rice straw as reinforcing filler were prepared in this study. The isolation of cellulose nanocrystal (CNC) followed a series of steps: delignification, sulfuric acid hydrolysis, and sonication. The process afforded short, rod-like CNCs with particle diameter ranging from 10 to 12 nm and crystallinity index of 76.1%. Fourier transform infrared analysis of the CNCs also confirmed absorption patterns typical of cellulose and the removal of silica. Bioplastic with different starch-to-CNC ratios were prepared by solution casting and evaporation method. Scanning electron micrographs of the films showed uniform dispersion of CNC in the starch matrix. Mechanical tests revealed that both tensile strength and modulus significantly increased with increasing CNC load while percent elongation decreased. The moisture uptake of the films reinforced with CNC also decreased an indication of improvement in water resistance. However, the thermal stability of the films decreased by the addition of CNC.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3