Effects of workload on medication administration errors in nursing: an analysis based on system dynamics modeling

Author:

Jin Haizhe1,Xiao Zhibin2,Yao Junhan3,Gong Zibo4,Wang Haiying5ORCID,Zhao Yinan6

Affiliation:

1. Department of Industrial Engineering, School of Business Administration, Northeastern University, China

2. School of Business Administration, Northeastern University, China

3. School of Economic Management, Tianjin University, China

4. Department of Radiology, Shengjing Hospital of China Medical University, China

5. School of Art Design, Zhejiang A&F University, China

6. Department of Neurology, The First Affiliated Hospital of China Medical University, China

Abstract

Medication administration errors account for a relatively high proportion of medical errors, with more than 50% occurring at the nursing administration stage. Nursing is characterized by a large amount of work, rigid working hours, high information cognitive intensity, and frequent information updates. The high workload of nurses is a significant cause of medication administration errors. In this study, a literature analysis was used to determine the elements of the system dynamics model, and the causal loop diagram was used to draw the relationship framework among the elements. Vensim personal learning edition and interview surveys were then used for model validation and simulation. First, 302 case analyses of medication administration errors collected from the three metropolitan area hospitals were used to construct the causal loop diagram, the stock and flow map of the medication administration error system, and the dynamics model; second, the model was tested from theoretical and historical data simulation perspectives; finally, the system dynamics model proposed in this study was used to simulate a medical institution from overtime and policy perspectives. Through system dynamics modeling, the inducing mechanism of workload on medication administration errors in nursing operations was elucidated, and corresponding suggestions for prevention were provided. In addition, ideas and basis for optimizing the medication administration process, improving workload, and preventing medication administration errors considering workload were provided.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3