Proteomics analysis of carotid body tumor revealed potential mechanisms and molecular differences among Shamblin classifications

Author:

Lv Yanze1,Gu Guangchao1,Zeng Rong1,Liu Zhili1,Wu Jianqiang2ORCID,Zheng Yuehong1ORCID

Affiliation:

1. Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China

2. Clinical Research Institute, National Science and Technology Key Infrastructure on Translational Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China

Abstract

Carotid body tumors (CBTs) are a rare type of paraganglioma, and surgical resection is the only effective treatment. Because of the proximity of CBTs to the carotid artery, jugular vein, and cranial nerve, surgery is extremely difficult, with high risks of hemorrhage and neurovascular injury. The Shamblin classification is used for CBT clinical evaluation; however, molecular mechanisms underlying classification differences remain unclear. This study aimed to investigate pathogenic mechanisms and molecular differences between CBT types. In Shamblin I, II, and III tumors, differentially expressed proteins (DEPs) were identified using direct data-independent acquisition (DIA). DEPs were validated using immunohistochemistry. Proteomics profiling of three Shamblin subtypes differed significantly. Bioinformatics analysis showed that adrenomedullin signaling, protein kinase A signaling, vascular endothelial growth factor (VEGF) signaling, ephrin receptor signaling, gap junction signaling, interleukin (IL)-1 signaling, actin cytoskeleton signaling, endothelin-1 signaling, angiopoietin signaling, peroxisome proliferator–activated receptor (PPAR) signaling, bone morphogenetic protein (BMP) signaling, hypoxia-inducible factor 1-alpha (HIF-1α) signaling, and IL-6 signaling pathways were significantly enriched. Furthermore, 60 DEPs changed significantly with tumor progression. Immunohistochemistry validated several important DEPs, including aldehyde oxidase 1 (AOX1), mediator complex subunit 22 (MED22), carnitine palmitoyltransferase 1A (CPT1A), and heat shock transcription factor 1 (HSF1). To our knowledge, this is the first application of proteomics quantification in CBT. Our results will deepen the understanding of CBT-related pathogenesis and aid in identifying therapeutic targets for CBT treatment.

Funder

CAMS Innovation fund for Medical Science

National High-Level Hospital Clinical Research Funding

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3