Liver metastases: Microenvironments and ex-vivo models

Author:

Clark Amanda M1,Ma Bo1,Taylor D Lansing23456,Griffith Linda7,Wells Alan12348

Affiliation:

1. Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA

2. Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA

3. Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA

4. McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA

5. Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA

6. University of Pittsburgh Cancer Institute, University of Pittsburgh, PA 15213, USA

7. Department of Biological Engineering, MIT, Cambridge, MA 02139, USA

8. Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA

Abstract

The liver is a highly metastasis-permissive organ, tumor seeding of which usually portends mortality. Its unique and diverse architectural and cellular composition enable the liver to undertake numerous specialized functions, however, this distinctive biology, notably its hemodynamic features and unique microenvironment, renders the liver intrinsically hospitable to disseminated tumor cells. The particular focus for this perspective is the bidirectional interactions between the disseminated tumor cells and the unique resident cell populations of the liver; notably, parenchymal hepatocytes and non-parenchymal liver sinusoidal endothelial, Kupffer, and hepatic stellate cells. Understanding the early steps in the metastatic seeding, including the decision to undergo dormancy versus outgrowth, has been difficult to study in 2D culture systems and animals due to numerous limitations. In response, tissue-engineered biomimetic systems have emerged. At the cutting-edge of these developments are ex vivo ‘microphysiological systems’ (MPS) which are cellular constructs designed to faithfully recapitulate the structure and function of a human organ or organ regions on a milli- to micro-scale level and can be made all human to maintain species-specific interactions. Hepatic MPSs are particularly attractive for studying metastases as in addition to the liver being a main site of metastatic seeding, it is also the principal site of drug metabolism and therapy-limiting toxicities. Thus, using these hepatic MPSs will enable not only an enhanced understanding of the fundamental aspects of metastasis but also allow for therapeutic agents to be fully studied for efficacy while also monitoring pharmacologic aspects and predicting toxicities. The review discusses some of the hepatic MPS models currently available and although only one MPS has been validated to relevantly modeling metastasis, it is anticipated that the adaptation of the other hepatic models to include tumors will not be long in coming.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3