CD248+CD8+ T lymphocytes suppress pathological vascular remodeling in human thoracic aortic aneurysms

Author:

Hu Xiaojuan1ORCID,Wu Ting2,Wang Chenxi3,Li Jun2,Ying Chunmei1

Affiliation:

1. Department of Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, China

2. Renji Clinical Stem Cell Research Center, Shanghai 200127, China

3. Department of Cardiovascular Surgery, School of Medicine, Shanghai Jiao Tong University, Ren Ji Hospital, Shanghai 200127, China

Abstract

Aortic aneurysms are characterized by vascular inflammation, neovascularization, and extracellular matrix destruction of the aortic wall. Although experimental studies indicate a potential role of CD248 in microvessel remodeling, the functions of CD248 in human vascular pathologies remain unexplored. Here we aimed to study how CD248 interferes with pathological vascular remodeling of human aortic aneurysms. Immunofluorescent staining showed that CD248 expression was mainly localized in the CD8+ T cells infiltrating in the adventitia and media of aortic walls of patients with ascending thoracic aortic aneurysms. qPCR and immunofluorescent staining analyses revealed increased aortic CD248 expression and infiltrating CD248+CD8+ T cells in aortic aneurysms than in nonaneurysmal aortas. Flow cytometry analysis of human peripheral blood further identified a fraction of circulating CD248+ cells which was confined in the CD8+ T-cell compartment. The increased infiltrating of CD248+CD8+ T cells was coincident with reduced circulating CD248+CD8+ T cells in patients with ascending TAA when compared with patients with coronary artery diseases and healthy donors. The CD248+CD8+ T cells were characterized by upregulated IL-10 and downregulated IL-1β/INF-γ expression when compared with CD248-CD8+ T cells. Moreover, when co-cultured with human aortic endothelial cells, the CD248+CD8+ T cells not only downregulated endothelial expression of ICAM1/VCAM1 and MMP2/3 but also suppressed endothelial migration. This study shows that CD248 reduces pathological vascular remodeling via anti-inflammatory CD248+CD8+ T cells, revealing a CD248-mediated cellular mechanism against human aortic aneurysms.

Funder

Shanghai Pujiang Program

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3