Corneal Epithelial Wound Healing

Author:

Lu Luo1,Reinach Peter S.2,Kao Winston W.-Y.3

Affiliation:

1. Department of Physiology and Biophysics, Wright State University School of Medicine, Dayton, Ohio

2. Department of Biological Sciences, State University of New York College of Optometry, New York, New York

3. Department of Ophthalmology, University of Cincinnati College of Medicine, Cincinnati, Ohio

Abstract

One of the important functions of the cornea is to maintain normal vision by refracting light onto the lens and retina. This property is dependent in part on the ability of the corneal epithelium to undergo continuous renewal. Epithelial renewal is essential because it enables this tissue to act as a barrier that protects the corneal interior from becoming infected by noxious environmental agents. Furthermore, the smooth optical properties of the corneal epithelial surface are sustained through this renewal process. The rate of renewal is dependent on a highly integrated balance between the processes of corneal epithelial proliferation, differentiation, and cell death. One experimental approach to characterize these three aspects of the renewal process has been to study the kinetics and dynamics of corneal re-epithelialization in a wound-healing model. This effort has employed in vivo and in vitro studies. From such studies it is evident that the appropriate integration and coordination of corneal epithelial proliferation, adhesion, migration, and cell demise is dependent on the actions of a myriad of cytokines. Our goal here is to provide an overview into how these mediators and environmental factors elicit control of cellular proliferation, adhesion, migration, and apoptosis. To this end we review the pertinent literature dealing with the receptor and the cell signaling events that are responsible for mediating cytokine control of corneal epithelial renewal. It is our hope that a better appreciation can be obtained about the complexity of the control processes that are responsible for assuring continuous corneal epithelial renewal in health and disease.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 339 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3