Assessments of tumor mutational burden estimation by targeted panel sequencing: A comprehensive simulation analysis

Author:

Li Dan1ORCID,Wang Dong1,Johann Donald J2,Hong Huixiao1ORCID,Xu Joshua1ORCID

Affiliation:

1. Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR 72079, USA

2. Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA

Abstract

Tumor mutational burden (TMB), when at a high level, is an emerging indicative factor of sensitivity to immune checkpoint inhibitors. Previous studies have shown that the more affordable and accurate targeted panels can be used to measure TMB as a substitute for whole exome sequencing (WES). However, additional processes, such as hotspot mutations exclusion and TMB adjustment, are usually required to deal with the effect of the limited panel sizes. A comprehensive investigation of the effective factors is needed for accurate TMB estimation by targeted panels. In this study, we quantitatively evaluated the variances of TMB values calculated by WES and targeted panels using 10,000 simulated targeted panels with panel sizes ranging from 0.2 to 3.1 million bases. With The Cancer Genome Atlas (TCGA) cancer samples and mutation profiles, we fixed regressions on WES-TMBs and panel-TMBs to assess the performance of a given targeted panel. Panel size was found as one of the major effective factors of TMB estimation. Meanwhile, by investigating the well-performing small panels that reported TMB values similar to those of WES, we demonstrated the evidence of the cancer type–specific impacts of genes on TMB estimation and identified high-impact gene sets for different cancer types based on the TCGA data. This study revealed the quantitative correlations between TMB variance and panel size, and the potential impacts of individual genes on TMB estimation. Our results suggested that for cancer patients diagnosed using targeted panels, it would be highly beneficial to have the capability to directly measure TMB from the targeted sequencing data. This would greatly assist in making decisions regarding the use of immunotherapies.

Funder

U.S. Food and Drug Administration

Publisher

Frontiers Media SA

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3