Enteric immunity, the gut microbiome, and sepsis: Rethinking the germ theory of disease

Author:

Cabrera-Perez Javier12,Badovinac Vladimir P34,Griffith Thomas S15678

Affiliation:

1. Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA

2. Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA

3. Department of Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA

4. Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA

5. Department of Urology, University of Minnesota Medical School, Minneapolis, MN 55455, USA

6. Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA

7. Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA

8. Minneapolis VA Health Care System, Minneapolis, MN 55417, USA

Abstract

Sepsis is a poorly understood syndrome of systemic inflammation responsible for hundreds of thousands of deaths every year. The integrity of the gut epithelium and competence of adaptive immune responses are notoriously compromised during sepsis, and the prevalent assumption in the scientific and medical community is that intestinal commensals have a detrimental role in the systemic inflammation and susceptibility to nosocomial infections seen in critically ill, septic patients. However, breakthroughs in the last decade provide strong credence to the idea that our mucosal microbiome plays an essential role in adaptive immunity, where a human host and its prokaryotic colonists seem to exist in a carefully negotiated armistice with compromises and benefits that go both ways. In this review, we re-examine the notion that intestinal contents are the driving force of critical illness. An overview of the interaction between the microbiome and the immune system is provided, with a special focus on the impact of commensals in priming and the careful balance between normal intestinal flora and pathogenic organisms residing in the gut microbiome. Based on the data in hand, we hypothesize that sepsis induces imbalances in microbial populations residing in the gut, along with compromises in epithelial integrity. As a result, normal antigen sampling becomes impaired, and proliferative cues are intermixed with inhibitory signals. This situates the microbiome, the gut, and its complex immune network of cells and bacteria, at the center of aberrant immune responses during and after sepsis.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3