GAS1RR, an immune-related enhancer RNA, is related to biochemical recurrence-free survival in prostate cancer

Author:

Xiong Zezhong1ORCID,Ge Yue1,Xiao Jun1,Wang Yanan1,Li Le1,Ma Sheng1,Lan Lingning2,Liu Bo1,Qin Baolong1,Luan Yang1,Yang Chunguang1,Ye Zhangqun1,Wang Zhihua1

Affiliation:

1. Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

2. Queen Mary college of Nanchang University, Nanchang 330006, Jiangxi Province, China

Abstract

Prostate cancer (PCa) is one of the malignant tumors of urinary system with a high morbidity. Enhancer RNA is a subclass of long non-coding RNA transcribed from active enhancer regions, which plays a critical role in gene transcriptional regulation. However, the role of enhancer RNA (eRNA) in PCa remains extremely mysterious. This study is aimed at exploring key prognostic eRNAs in PCa. First, we downloaded gene expression data and clinical data of 33 cancer types from UCSC Xena platform. Second, we selected reported putative eRNA-target pairs and performed the Kaplan–Meier survival and correlation analysis to determine the crucial eRNAs most related to biochemical recurrence (BCR)-free survival. Third, we explored the clinical characteristics with the key eRNA GAS1 adjacent regulatory RNA (GAS1RR) and performed a computational difference algorithm and the Cox regression analysis. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to explore the underlying mechanisms. Finally, we used the pan-cancer data from The Cancer Genome Atlas (TCGA) and performed reverse transcription-quantitative polymerase chain reaction (RT-qPCR) of 18 pairs of specimens to prove the results we acquired. Among all 2695 putative eRNAs, 6 pairs of eRNA-target genes were prominently related to BCR-free survival. Growth arrest-specific protein 1 ( GAS1) was a target gene of GAS1RR ( r = 0.86, P < 0.001). Patients with low GAS1RR expression were likely to have unfavorable clinical characteristics. The result of computational Cox regression analysis demonstrated that GAS1RR may predict the prognosis of PCa independently. RT-qPCR results illuminated that GAS1RR and GAS1 were both downregulated in PCa tissues, and they show a strong positive correlation. GO and KEGG analyses revealed biological processes that GAS1RR was mainly associated with. Immune infiltration analysis indicated that GAS1RR expression is correlated with the infiltration level of six kinds of immune cells. Our results suggest that GAS1RR may be clinically useful in the prediction of PCa prognosis. Moreover, it may also be a prognostic predictor and theoretic target with great promise in PCa.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3