Expressional difference, distributions of TGF-β1 in TGF-β1 knock down transgenic mouse, and its possible roles in injured spinal cord

Author:

XiYang Yan-Bin1,Lu Bing-Tuan1,Ya-Zhao 1,Yuan-Zhang 1,Xia Qin-Jie2,Zou Yu2,Zhang Wei3,Quan Xiong-Zhi3,Liu Su134,McDonald John W34,Zhang Lian-Feng5,Wang Ting-Hua12

Affiliation:

1. Institute of Neuroscience, Kunming Medical University, Kunming 650500, China

2. Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China

3. International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA

4. Johns Hopkins University School of Medicine, Department of Neurology and Department of Physical Medicine and Rehabilitation, Baltimore, MD, USA

5. Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences(CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), Beijing 100021, China

Abstract

Transforming growth factor β1 (TGF-β1) is a multi-functional cytokine implicated in many aspects of mammalian wound healing and scar tissue formation. However, few experiments have so far addressed the potential biological effects of TGF-β1 in the nervous system after injury, in addition to the immune system. In the present study, expressional silencing TGF-β1 was achieved by selecting predesigning hairpins targeting mouse TGF-β1 genes. Four homozygous transgenic offspring were generated and designed as Founder 90, Founder 12, Founder 41 and Founder 46. The down-regulated rates of TGF-β1 in different transgenic mice were also determined. To investigate the potential roles of TGF-β1, we observed changes in the neurological behavior of TGF-β1-knockdown (TGF-β1-kd) mice after spinal cord transection (SCT). Moreover, mRNA levels of inflammatory cytokines, including IL-1, IL-6, IL-10, NF-κB and TNF, were also detected in nucleate cells from blood by real-time PCR. Consequently, different TGF-β1 expressions were detected in multiple tissues, and protein levels of TGF-β1 decreased at different rates relative to that of wild type (WT) ones. The levels of TGF-β1 proteins in TGF-β1-kd mice decreased at most by 57% in Founder 90, which showed a significant recovery in Basso, Beattie, Bresnahan (BBB) scores after SCT compared with that of WT. However, expressions of immune relative genes showed no dramatic difference compared with WT ones. This study is the first to generate TGF-β1 down regulated mice and determine the possible roles of TGF-β1 in vivo in different conditions.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3