A novel route for joining of austenitic stainless steel (SS-316) using microwave energy

Author:

Srinath M S1,Sharma A K1,Kumar P1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India

Abstract

Material processing through microwaves is a challenging area of research. The present work illustrates an application of the developing technology of joining bulk metallic materials through microwave heating. Stainless steel (SS-316) in bulk form was used as candidate material to be joined. Joining of bulk SS-316 was carried out using a multimode microwave applicator at the frequency of 2.45 GHz and power of 900 W. Joining was effected through fusing and metallurgical bonding of a sandwich layer between the bulk pieces. Heating in the sandwich layer was selectively induced by exposing it to controlled microwave radiation for a predetermined period. The joints were characterized through field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and measurement of Vickers microhardness, porosity, and tensile strength. The FE-SEM study showed that the faying surfaces are well fused and get bonded with base material. Examination of the joint microstructure showed cellular-like growth in the entire joint region. The average Vickers microhardness of the core of the joint area was observed to be 290±14 Hv; however, that in the interface zone was found to be significantly higher (∼420±15 Hv). Precipitation of metallic carbides occurred predominantly in the joint interface region. Porosity measurement in the joint area revealed negligible porosity (0.78 per cent). Evaluation of the tensile properties of the joints showed an ultimate tensile strength of the order of 309 MPa with an elongation of 11.50 per cent.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3