Dynamic changes of serum metabolite profiling in septic mice based on high performance liquid chromatography of quadrupole time of flight mass spectrometry analysis

Author:

Li Shutong12ORCID,Zeng Qi3,Li Shentang4,Liu Yarong12,Feng Yang12,Chen Fang1,Zou Lianhong1,Liu Xiehong1,Liu Yanjuan1,Jiang Yu1

Affiliation:

1. Department of Emergency Medicine, Clinical Research Center for Emergency and Critical Care in Hunan Province, Hunan Provincial Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China

2. Hunan Provincial Key Laboratory of Molecular Epidemiology, Hunan Normal University, Changsha, Hunan, China

3. Department of Ultrasonic Diagnosis, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China

4. Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China Shutong Li and Qi Zeng contributed equally.

Abstract

The objective of this study is to gain insights into the underlying metabolic transformations that occurred during the whole progression of cecal ligation and puncture (CLP)-induced sepsis, thus providing new targets for its treatment. High-performance liquid chromatography of quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS/MS) combined with multivariate statistical techniques was used to detect the s in serum from septic mice. Fifty male mice were divided into two groups, including the sham group ( n = 7) and the CLP-induced sepsis group ( n = 43). Animals were sacrificed at 1, 3, 5, and 7 days post-CLP and then serum were collected for metabolomic analysis. Multivariate regression analysis was carried out through MetaboAnalyst 5.0, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), to identify the s and screen out the related differential metabolites. Besides, the KEGG pathway analysis was used to analyze the related metabolic pathways in which the identified metabolites were involved. Based on the fold change (FC > 2.0 or <0.5), variable important in projection (VIP > 1.2), and P value ( P < 0.05), we found 26, 17, 21, and 17 metabolites in septic mice at 1, 3, 5, and 7 days post-CLP, respectively, compared with that of the sham group. The PCA and PLS-DA pattern recognition showed a cluster-type distribution between the sham group and the CLP group. Dysregulated amino acid metabolism, as well as disturbed nucleotide metabolism, is observed. Several important metabolic pathways were identified between the sham group and the CLP group. Among them, phenylalanine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis showed striking at day 1 post-CLP. At day 3, phenylalanine, tyrosine, and tryptophan biosynthesis changed significantly. However, as the disease process, only pyrimidine metabolism showed the most significant alternation, compared to the sham group. Several differential metabolites were identified in the CLP group compared with that of the sham group and they were presented with dynamic alternation at different time points post-CLP, indicating metabolic disturbance occurred throughout the whole sepsis progression.

Funder

Major Special Project of Hunan Province

Scientific research project of Hunan Provincial Health Commission

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3