Expression of TLR2, TLR3, TLR4, and TLR7 on pulmonary lymphocytes of Schistosoma japonicum-infected C57BL/6 mice

Author:

Chen Dianhui1ORCID,Zhao Yi2,Feng Yuanfa2,Jin Chenxi2,Yang Quan2,Qiu Huaina2,Xie Hongyan2,Xie Sihao2,Zhou Yi3,Huang Jun2

Affiliation:

1. The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou Medical University, China

2. Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, China

3. College of Pharmacy, Guangzhou Medical University, China

Abstract

Despite the paramount role of TLRs in the induction of innate immune and inflammatory responses, there is a paucity of studies on the role of TLRs in Schistosoma japonicum infection. Here, we observed obvious infiltration of inflammatory cells in S. japonicum-infected C57BL/6 mouse lungs. Expression and release of IFN-γ, IL-4, and IL-17 were significantly higher in pulmonary lymphocytes from infected mice compared with control mice in response to anti-CD3 plus anti-CD28 mAbs. Higher percentages of TLR2, TLR3, TLR4, and TLR7 were expressed on such lymphocytes, and the TLR agonists PGN, Poly I:C, LPS, and R848 induced a higher level of IFN-γ. However, a higher level of IL-4 was found in the supernatant of pulmonary lymphocytes from infected mice stimulated by these TLR agonists plus CD3 Ab. Only R848 plus anti-CD3 mAb could induce a higher level of IFN-γ in such lymphocytes. TLR expressions were then compared on different pulmonary lymphocytes after infection, including T cells, B cells, NK cells, NKT cells, and γδT cells. The expression levels of TLR3 on T cells, B cells, NK cells, and γδT cells were increased in the lungs after infection. NK cells also expressed higher levels of TLR4 after infection of control mice. Collectively, these findings highlight the potential role of TLR expression in the context of S. japonicum infection.

Funder

Guangdong provincial education department

Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3