Estradiol-17β [E2] stimulates wound healing in a 3D in vitro tissue-engineered vaginal wound model

Author:

Shafaat Sarah1ORCID,Roman Regueros Sabiniano1,Chapple Christopher2,MacNeil Sheila1ORCID,Hearnden Vanessa1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK

2. Department of Urology, Royal Hallamshire Hospital, Urology Clinic, Sheffield, UK

Abstract

Childbirth contributes to common pelvic floor problems requiring reconstructive surgery in postmenopausal women. Our aim was to develop a tissue-engineered vaginal wound model to investigate wound healing and the contribution of estradiol to pelvic tissue repair. Partial thickness scalpel wounds were made in tissue models based on decellularized sheep vaginal matrices cultured with primary sheep vaginal epithelial cells and fibroblasts. Models were cultured at an airliquid interface (ALI) for 3 weeks with and without estradiol-17β [E2]. Results showed that E2 significantly increased wound healing and epithelial maturation. Also, E2 led to collagen reorganization after only 14 days with collagen fibers more regularly aligned and compactly arranged Additionally, E2 significantly downregulated α-SMA expression which is involved in fibrotic tissue formation. This model allows one to investigate multiple steps in vaginal wound healing and could be a useful tool in developing therapies for improved tissue healing after reconstructive pelvic floor surgery.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3