Continuous nutrient supply culture strategy controls multivesicular endosomes pathway and anti-photo-aging miRNA cargo loading of extracellular vesicles

Author:

Chen Lihao1,Xie Weihan1,Wu Keke1,Meng Yuan1,He Yijun1,Cai Jiawei1,Jiang Yuan1,Zhao Qi1,Yang Yixi1,Zhang Minru1,Lu Manping2,Lin Shaozhang1,Liang Lin1,Zhang Zhiyong1ORCID

Affiliation:

1. Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong,...

2. Yue Dong Hospital District of Third Affiliated Hospital of Sun Yat-Sen University, Meizhou, Guangdong, China

Abstract

Extracellular vesicle (EV) therapy recently had shown significant efficacy in various diseases. Serum starvation culture (SC) is one of the most widely used methods for collecting EVs. However, SC may cause inadvertent effects and eventually dampen the therapeutic potential of EVs. Therefore, we developed a novel method for EV collection, continuous nutrient supply culture (CC), which can provide an optimal condition for mesenchymal stem cells (MSCs) by continuously supplying essential nutrients to MSCs. By comparing with SC strategy, we revealed that CC could maintain CC-MSCs in a normal autophagy and apoptotic state, which reduced the shunting of EV precursors in cells and useless information material carried by EVs. In CC-MSCs, the expression levels of endosomal sorting complexes required for transport (ESCRT) and targeting GTPase27 (Rab27) were upregulated compared to those in SC-MSCs. Besides, we analyzed the membrane transport efficiency of EV formation, which demonstrated the CC strategy could promote the formation of EV precursors and the release of EVs. In addition, miRNA analysis revealed that CC-EVs were enriched with anti-chronic inflammatory factors, which could inhibit the nuclear factor kappa-B (NF-κB) pathway, mitigate chronic inflammation, and effectively repair skin photo-aging damage.

Funder

Science and Technology Innovation Project of Foshan City

Guangzhou Regenerative Medicine and Health Guangdong Laboratory

National Natural Science Foundation of China

guangzhou municipal science and technology project

Collegiate Innovation and National Young Thousand-Talent Scheme

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3