Investigating how prior knowledge influences perception and action in developmental coordination disorder

Author:

Allen Kate12,Harris David1ORCID,Arthur Tom1,Wood Greg3,Buckingham Gavin1ORCID

Affiliation:

1. Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK

2. Department of Health and Care Professions, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK

3. Department of Sport and Exercise Sciences, Research Centre for Musculoskeletal Science and Sports Medicine, Manchester Metropolitan University, Manchester, UK

Abstract

Developmental coordination disorder (DCD) is characterised by a broad spectrum of difficulties in performing motor tasks. It has recently been proposed that a specific deficit in sensorimotor prediction and feedforward planning might underpin these motoric impairments. The purpose of this study was to use a naturalistic object lifting paradigm to examine whether deficits in sensorimotor prediction might underpin the broad spectrum of difficulties individuals with DCD face when interacting with objects in their environment. We recruited 60 children with probable DCD and 61 children without DCD and measured perceptions of heaviness and fingertip force rate application when interacting with objects which varied in their apparent weight. If deficits in sensorimotor prediction do underpin the broad-ranging motor difficulties seen in DCD, we would expect to see a reduced effect of visual size cues on fingertip force rates and illusory misperceptions of object heaviness. We found no evidence of differences in any metrics of sensorimotor prediction between children with ( n = 46) and without DCD ( n = 61). Furthermore, there was no correlation between any metrics of sensorimotor prediction and motor performance (as assessed by the standard diagnostic movement assessment battery). Illusory misperceptions of object weight also did not appear to differ between groups. These findings suggest that issues with sensorimotor prediction are unlikely to affect the performance of simple real-world movements in those with DCD.

Funder

Waterloo Foundation

Publisher

SAGE Publications

Subject

Physiology (medical),General Psychology,Experimental and Cognitive Psychology,General Medicine,Neuropsychology and Physiological Psychology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3