Immortal Time Bias in Observational Studies of Time-to-Event Outcomes

Author:

Agarwal Parul1,Moshier Erin1,Ru Meng1,Ohri Nisha2,Ennis Ronald3,Rosenzweig Kenneth2,Mazumdar Madhu1

Affiliation:

1. Department of Population Health Science and Policy, Institute for Healthcare Delivery Science, Tisch Cancer Institute (TCI), Icahn School of Medicine at Mount Sinai, New York, NY, USA

2. Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA

3. Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA

Abstract

The objectives of this study are to illustrate the effects of immortal time bias (ITB) using an oncology outcomes database and quantify through simulations the magnitude and direction of ITB when different analytical techniques are used. A cohort of 11 626 women who received neoadjuvant chemotherapy and underwent mastectomy with pathologically positive lymph nodes were accrued from the National Cancer Database (2004-2008). Standard Cox regression, time-dependent (TD), and landmark models were used to compare overall survival in patients who did or did not receive postmastectomy radiation therapy (PMRT). Simulation studies showing ways to reduce the effect of ITB indicate that TD exposures should be included as variables in hazard-based analyses. Standard Cox regression models comparing overall survival in patients who did and did not receive PMRT showed a significant treatment effect (hazard ratio [HR]: 0.93, 95% confidence interval [CI]: 0.88-0.99). Time-dependent and landmark methods estimated no treatment effect with HR: 0.97, 95% CI: 0.92 to 1.03 and HR: 0.98, 95% CI, 0.92 to 1.04, respectively. In our simulation studies, the standard Cox regression model significantly overestimated treatment effects when no effect was present. Estimates of TD models were closest to the true treatment effect. Landmark model results were highly dependent on landmark timing. Appropriate statistical approaches that account for ITB are critical to minimize bias when examining relationships between receipt of PMRT and survival.

Funder

National Cancer Institute

Publisher

SAGE Publications

Subject

Oncology,Hematology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3