Three-dimensional, Scaffold-Free, Autologous Chondrocyte Transplantation: A Systematic Review

Author:

Riedl Moritz1,Vadalà Gianluca2,Papalia Rocco2,Denaro Vincenco2

Affiliation:

1. Regensburg University Medical Center, Department of Trauma Surgery, Regensburg, Germany.

2. University Campus Bio-Medico of Rome, Department of Orthopaedic and Trauma Surgery, Rome, Italy.

Abstract

Background: A 3-dimensional, scaffold-free, and completely autologous form of chondrocyte transplantation (ACT3D) has been developed and applied in clinical practice in the past decade to overcome disadvantages of previous-generation procedures. Purpose: To document and analyze the available literature on the results of ACT3D in the treatment of articular chondral lesions in the knee and hip joints. Study Design: Systematic review; Level of evidence, 4. Methods: All studies published in English addressing ACT3D were identified and included those that fulfilled the following criteria: (1) level 1 through 4 evidence, (2) measures of radiological or functional/clinical outcome, and (3) outcome related to cartilage lesions of the knee and hip joints. Results: A total of 10 studies were selected: 2 randomized controlled trials, 1 cohort study, and 7 case series. The studies revealed significant increases in patients’ subjective quality of life, satisfaction, pain reduction, and improvement in joint function at short- to medium-term follow-up. Magnetic resonance imaging-assisted examination and second-look arthroscopy showed a hyaline-like repair tissue with a high degree of defect filling and integration. Conclusion: ACT3D shows promising results in the therapy of articular cartilage defects in the knee as well as in the hip, but well-designed, long-term studies are lacking. ACT3D might have relevant advantages over common matrix-associated autologous chondrocyte transplantation products, but systematic evaluation and randomized controlled studies are crucial to verify the potential of this tissue-engineered approach.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3