Deep Learning Artificial Intelligence Tool for Automated Radiographic Determination of Posterior Tibial Slope in Patients With ACL Injury

Author:

Lu Yining12,Pareek Ayoosh1,Yang Linjun12,Rouzrokh Pouria12,Khosravi Bardia12,Okoroha Kelechi R.1,Krych Aaron J.1,Camp Christopher L.1

Affiliation:

1. Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA

2. Orthopedic Surgery Artificial Intelligence Laboratory, Mayo Clinic, Rochester, Minnesota, USA

Abstract

Background: An increased posterior tibial slope (PTS) corresponds with an increased risk of graft failure after anterior cruciate ligament (ACL) reconstruction (ACLR). Validated methods of manual PTS measurements are subject to potential interobserver variability and can be inefficient on large datasets. Purpose/Hypothesis: To develop a deep learning artificial intelligence technique for automated PTS measurement from standard lateral knee radiographs. It was hypothesized that this deep learning tool would be able to measure the PTS on a high volume of radiographs expeditiously and that these measurements would be similar to previously validated manual measurements. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: A deep learning U-Net model was developed on a cohort of 300 postoperative short-leg lateral radiographs from patients who underwent ACLR to segment the tibial shaft, tibial joint surface, and tibial tuberosity. The model was trained via a random split after an 80 to 20 train-validation scheme. Masks for training images were manually segmented, and the model was trained for 400 epochs. An image processing pipeline was then deployed to annotate and measure the PTS using the predicted segmentation masks. Finally, the performance of this combined pipeline was compared with human measurements performed by 2 study personnel using a previously validated manual technique for measuring the PTS on short-leg lateral radiographs on an independent test set consisting of both pre- and postoperative images. Results: The U-Net semantic segmentation model achieved a mean Dice similarity coefficient of 0.885 on the validation cohort. The mean difference between the human-made and computer-vision measurements was 1.92° (σ = 2.81° [ P = .24]). Extreme disagreements between the human and machine measurements, as defined by ≥5° differences, occurred <5% of the time. The model was incorporated into a web-based digital application front-end for demonstration purposes, which can measure a single uploaded image in Portable Network Graphics format in a mean time of 5 seconds. Conclusion: We developed an efficient and reliable deep learning computer vision algorithm to automate the PTS measurement on short-leg lateral knee radiographs. This tool, which demonstrated good agreement with human annotations, represents an effective clinical adjunct for measuring the PTS as part of the preoperative assessment of patients with ACL injuries.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3