Prediction on friction characteristics of industrial brakes using artificial neural networks

Author:

Grzegorzek Wojciech1,Scieszka Stanislaw F1

Affiliation:

1. Transportation and Tribotechnology Division, Silesian University of Technology, Gliwice, Poland

Abstract

Safety and reliability are the main requirements for brake devices in the mining winding installations. Therefore, selection of the right materials for the friction brake elements (pads and discs) is the most challenging task for brake system designers. The friction coefficient for such friction couples should be relatively high but, above all it should be stable. In order to achieve the desired brake friction couple performance, a new approach to the prediction of the tribological processes versus friction materials formulation is needed. The paper shows that the application of the artificial neural network can be productive in modelling complex, multi-dimensional functional relationships directly from experimental data. The artificial neural network can learn to produce the model of friction brake behaviour.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3