Tribological characterization of potential crankshaft bearing steels for roller bearing engines

Author:

Vrček Aleks1ORCID,Hultqvist Tobias1ORCID,Johannesson Tomas2,Marklund Pär1,Larsson Roland1

Affiliation:

1. Division of Machine Elements, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden

2. Volvo Car Corporation, Göteborg, Sweden

Abstract

A crankshaft roller bearing internal combustion engine (ICE) offers a five percent or more improvement in overall engine efficiency and, thereby, a reduction in a five percent of CO2 emissions, compared to a plain bearing supported crankshaft. Current forged crankshaft steels represent the limiting factor of the rolling component, therefore, a replacement of the crankshaft steel is required. Apart from this, the tribology of the rolling contacts has been shown to be detrimental when lubricated with current engine oils. Therefore, this paper investigates the tribological performance of potential crankshaft bearing steels, i.e. DIN C56E2 (G55); DIN 50CrMo4 (G50); and DIN 100Cr6 (G3), while utilizing a state-of-the-art low viscosity 0W20 engine oil and under conditions prevalent to ICE. For this, damage mode investigation was performed in a disc-on-disc setup. Based on the results, wear damage of DIN 100Cr6 discs was shown to be dependent on the steel grade of which the counterpart disc was made from and surface hardness difference between both discs. In addition, surface fatigue and wear damage can be completely eliminated by selecting a proper surface roughness and hardness combination. Also, while under an elevated roughness level, engine oil was shown to promote both surface fatigue and wear damage through the work of ZDDP additives, which under extreme conditions can act as an extreme pressure (EP) additive. The residual stress measurements using the XRD technique revealed relatively high compressive residual stresses for G55 and G50 in comparison to G3 steel after surface induction hardening. In addition, no significant changes in residual stress for G55 and G50 were observed after the test. In contrast, relatively high tensile stress was observed for G3 near the surface region. This suggests that the most commonly used 100Cr6 bearing steel, in this case, is the most susceptible to surface fatigue.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3