Study on the performance of gas foil journal bearings with bump-type shim foil

Author:

Hu Hongyang1ORCID,Feng Ming1,Ren Tianming1

Affiliation:

1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China

Abstract

The upscaling of turbomachinery using gas foil journal bearings (GFJBs) is limited because of their limited load capacity and dynamic stability. The improvement potential of shim foil inserted under the bump foil of such bearings is investigated in terms of better bearing performance. The arch height difference Δ hb between the shim foil and bump foil can be zero or not to attain the different effect. By considering the local hardening structural stiffness and an Initial installation clearance due to the shim foil, the static and dynamic characteristics of the novel bearing were calculated through the finite difference method (FDM) and perturbation method, respectively. In the analysis, a modified bump stiffness model considering the variable foil thickness was established, and a 2 D thick plate model was adopted for the top foil. The characteristics of novel GFJB with and without preload were compared with the traditional bearing. The results indicate that the load capacity and direct stiffness of the novel GFJB with shim foil can be increased largely, especially when there is a preload (Δ hb≠0). And the improvement is reinforced as the increment of Δ hb. Moreover, the stability threshold speed ( STS) of rotor supported by the novel GFJBs is enhanced by the preload, which means better stability. In addition, an air compressor test has also been conducted to verify the improved supporting performance of novel bearings. Based on this study it is convinced that the addition of shim foil under a GFJB's bump foil can be of practical interest in the quest of enhanced load capacity and dynamic stability. Moreover, the installation of shim foil is not affected by the working environment and could even be retrofited on the existing GFJBs.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3