Data privacy preserving federated transfer learning in machinery fault diagnostics using prior distributions

Author:

Zhang Wei12,Li Xiang34ORCID

Affiliation:

1. School of Aerospace Engineering, Shenyang Aerospace University, Shenyang, China

2. Department of Mechanics, Tianjin University, Tianjin, China

3. Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Northeastern University, Shenyang, China

4. College of Sciences, Northeastern University, Shenyang, China

Abstract

Federated learning has been receiving increasing attention in the recent years, which improves model performance with data privacy among different clients. The intelligent fault diagnostic problems can be largely benefited from this emerging technology since the private data generally cannot leave local storage in the real industries. While promising federated learning performance has been achieved in the literature, most studies assume data from different clients are independent and identically distributed. In the real industrial scenarios, due to variations in machines and operating conditions, the data distributions are generally different across different clients, that significantly deteriorates the performance of federated learning. To address this issue, a federated transfer learning method is proposed in this article for machinery fault diagnostics. Under the condition that data from different clients cannot be communicated, prior distributions are proposed to indirectly bridge the domain gap. In this way, client-invariant features can be extracted for diagnostics while the data privacy is preserved. Experiments on two rotating machinery datasets are implemented for validation, and the results suggest the proposed method offers an effective and promising approach for federated transfer learning in fault diagnostic problems.

Funder

Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education Northeastern University

Fellowship of China Postdoctoral Science Foundation

Liaoning Provincial Department of Science and Technology

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3