A comparison of machine learning algorithms for assessment of delamination in fiber-reinforced polymer composite beams

Author:

He Mengyue12ORCID,Wang Yishou2ORCID,Ram Ramakrishnan Karthik3,Zhang Zhifang1ORCID

Affiliation:

1. Guangzhou University-Tamkang University Joint Research Center for Engineering Structure Disaster Prevention and Control, Guangzhou University, Guangzhou, China

2. School of Aerospace Engineering, Xiamen University, Xiamen, China

3. Department of Engineering Science, University of Oxford, Oxford, UK

Abstract

Structural health monitoring techniques based on vibration parameters have been used to assess the internal delamination damage of fiber-reinforced polymer composites. Recently, machine learning algorithms have been adopted to solve the inverse problem of predicting delamination parameters of the delamination from natural frequency shifts. In this article, a delamination detection methodology is proposed based on the changes in multiple modes of frequencies to assess the interface, location, and size of delamination in fiber-reinforced polymer composites. Three types of machine learning algorithms including back propagation neural network, extreme learning machine, and support vector machine algorithm were adopted as inverse algorithms for assessment of the delamination parameters, with a special focus on the interface prediction. A theoretical model of fiber-reinforced polymer beam with delamination under vibration was constructed to learn how the frequencies are affected by the delaminations (“forward problem”) and to generate a database of “frequency shifts versus delamination parameters” to be used in machine learning algorithms for delamination prediction (“inverse problem”). Multiple carbon/epoxy fiber-reinforced polymer beam specimens were manufactured and measured by a laser scanning Doppler vibrometer to extract the modal frequencies. Numerical and experimental verification results have shown that support vector machine has the best prediction performance among the three machine learning algorithms, with high prediction accuracy and only requiring a small number of samples. For predicting the interface of delamination which is a discrete variable, support vector machine classification has observed better prediction accuracy and requiring less running time than regression. This study is one of the first to prove the applicability of support vector machine for structural health monitoring of delamination damage in fiber-reinforced polymer composites and has the potential to improve the prediction capability of machine learning algorithms. Another significant outcome of the study is that the interface of delamination has been predicted accurately with support vector machine.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3