Deep transfer learning for connection defect identification in prefabricated structures

Author:

Tang Hesheng1,Xie Yajuan1ORCID

Affiliation:

1. Department of Disaster Mitigation for Structures, College of Civil Engineering, Tongji University, Shanghai, China

Abstract

Defect and damage identification is a crucial task in structural health monitoring (SHM) systems. Recent advances in deep neural networks (DNNs) show success in identification from data for a wide range of SHM systems. However, this approach faces challenges in terms of robustness and scalability with respect to data scarcity. Data collection for the training of DNNs from both the field and laboratory experiments is costly. To address this issue, we employ transfer learning (TL) through the use of deep convolutional neural networks (CNNs) for defect identification in the context of a sensor network’s vibration data. A deep TL (DTL) paradigm is used herein so that a pretrained CNN, primarily trained for generalized defect identification tasks where sufficient training data exist (source domain), can be re-trained partially (fine-tuned) as a later secondary process that targets this application domain (target domain) specifically. Different DTL cases are compared, and training data are enhanced with numerical simulation data. The efficacy and robustness of this method are demonstrated on defect identification for full-scale prefabricated concrete shear wall structures with different levels of data scarcity. This method utilizes dynamic responses collected using a sensor network. This is an extension of deep learning vision for non-vision tasks. Defect features are extracted from the dataset of dynamic responses using this DTL frame. Experimental results show that this approach can improve identification models on datasets with few samples.

Funder

Fundamental Research Funds for the Central Universities

Ministry of Science and Technology of the People’s Republic of China

Shanghai Municipal Science and Technology Major Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3