Novelty detection of cable-stayed bridges based on cable force correlation exploration using spatiotemporal graph convolutional networks

Author:

Li Shunlong1ORCID,Niu Jin1,Li Zhonglong1

Affiliation:

1. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, China

Abstract

The novelty detection of bridges using monitoring data is an effective technique for diagnosing structural changes and possible damages, providing a critical basis for assessing the structural states of bridges. As cable forces describe the state of cable-stayed bridges, a novelty detection method was developed in this study using spatiotemporal graph convolutional networks by analysing spatiotemporal correlations among cable forces determined from different cable dynamometers. The spatial dependency of the sensor network was represented as a directed graph with cable dynamometers as vertices, and a graph convolutional network with learnable adjacency matrices was used to capture the spatial dependency of the locally connected vertices. A one-dimensional convolutional neural network was operated along the time axis to capture the temporal dependency. Sensor faults and structural variations could be distinguished based on the local or global anomalies of the spatiotemporal model parameters. Faulty sensors were detected and isolated using weighted adjacency matrices along with diagnostic indicators of the model residuals. After eliminating the effect of the sensor fault, the underlying variations in the state of the cable-stayed bridge could be determined based on the changing data patterns of the spatiotemporal model. The application of the proposed method to a long-span cable-stayed bridge demonstrates its effectiveness in sensor fault localization and structural variation detection.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3