Crack detection in ultrahigh-performance concrete using robust principal component analysis and characteristic evaluation in the frequency domain

Author:

Cao Jixing123,He Haijie4,Zhang Yao15ORCID,Zhao Weigang1,Yan Zhiguo5,Zhu Hehua5

Affiliation:

1. School of Safety Engineering and Emergency Management, Shijiazhuang Tiedao University, Shijiazhuang, China

2. Department of Disaster Mitigation for Structures, Tongji University, Shanghai, China

3. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, China

4. College of Civil and Architectural Engineering, Taizhou University, Taizhou, China

5. Department of Geotechnical Engineering, Tongji University, Shanghai, China

Abstract

Studying the crack propagation of ultrahigh-performance concrete (UHPC) helps us understand its mechanical mechanism and assess its structural performance. A novel method for crack separation and its characteristic evaluation was developed in this work. The proposed method introduces robust principal component analysis (RPCA) to decompose a data matrix from video streams stacked into a low-rank matrix and a sparse matrix, in which the sparse matrix represents the crack information. Compared with the cracks in a binary image, the obtained sparse matrix preserves rich crack information that can be used to quantify crack characteristics. The statistical characteristics of the crack area, the major and minor axes of the equivalent ellipse for crack regions, and the power spectral density are investigated and compared continuously. The proposed method is demonstrated by the crack development of UHPC under tensile loading. The analysis results indicate that RPCA can accurately separate cracks from the background. In the frequency domain by performing the Fourier transform of the sparse matrix, cracks are concentrated at small wavenumbers and the magnitude of small wavenumbers increases with an increase in the crack width. The relationship between the crack propagation and the stress–strain is also discussed. This work provides insight into the crack propagation of UHPC and an accumulated crack database for predicting the damage evolution of UHPC.

Funder

Innovation Research Group Program of Natural Science, Hebei Province

National Natural Science Foundation of China

Scientific Research Foundation for the Returned Overseas Scholars, Hebei Province

Natural Science Foundation of Hebei Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3