Automated region-of-interest localization and classification for vision-based visual assessment of civil infrastructure

Author:

Yeum Chul Min1,Choi Jongseong2,Dyke Shirley J12

Affiliation:

1. Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA

2. School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA

Abstract

Complementary advances in computer vision and new sensing platforms have mobilized the research community to pursue automated methods for vision-based visual evaluation of our civil infrastructure. Spatial and temporal limitations typically associated with sensing in large-scale structures are being torn down through the use of low-cost aerial platforms with integrated high-resolution visual sensors. Despite the enormous efforts expended to implement such technology, practical real-world challenges still hinder the application of these methods. The large volumes of complex visual data, collected under uncontrolled circumstances (e.g. varied lighting, cluttered regions, occlusions, and variations in environmental conditions), impose a major challenge to such methods, especially when only a tiny fraction of them are used for conducting the actual assessment. Such difficulties induce undesirable high rates of false-positive and false-negative errors, reducing both trustworthiness and efficiency in the methods. To overcome these inherent challenges, a novel automated image localization and classification technique is developed to extract the regions of interest on each of the images, which contain the targeted region for inspection. Regions of interest are extracted here using structure-from-motion algorithm. Less useful regions of interest, such as those corrupted by occlusions, are then filtered effectively using a robust image classification technique, based on convolutional neural networks. Then, such highly relevant regions of interest are available for visual assessment. The capability of the technique is successfully demonstrated using a full-scale highway sign truss with welded connections.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3