Fault diagnosis using variational autoencoder GAN and focal loss CNN under unbalanced data

Author:

Li Weihan1,Liu Dunke2,Li Yang3,Hou Ming4,Liu Jie3,Zhao Zhen2,Guo Aibin5,Zhao Huimin2,Deng Wu2ORCID

Affiliation:

1. Engineering Training Center, Civil Aviation University of China, Tianjin, China

2. College of Electronic Information and Automation, Civil Aviation University of China, Tianjin, China

3. Anhui CQC-CHEARI Technology Co., Ltd, Chuzhou, China

4. Chuzhou Technical Supervision and Testing Center, Chuzhou, China

5. Suzhou Jianghai Communication Development Industrial Co, Ltd, Suzhou, China

Abstract

For the poor model generalization and low diagnostic efficiency of fault diagnosis under imbalanced distributions, a novel fault diagnosis method using variational autoencoder generation adversarial network and improved convolutional neural network, named VGAIC-FDM, is proposed in this paper. First, to capture local features of vibration signals, continuous wavelet transform is employed to convert the original one-dimensional fault signals into wavelet time–frequency images. Second, for the data dimensionality reduction and model simplification, the time–frequency wavelet images are processed in grayscale to generate single-channel grayscale time–frequency images. Then, sample augmentation is performed on grayscale time–frequency images to balance the dataset by using a variational autoencoder generation adversarial network. Finally, the generated images and the original images are fused and trained by using a focus-loss-optimized CNN classifier to achieve fault diagnosis under unbalanced conditions. The experimental results show that the VGAIC-FDM effectively captures the potential spatial distribution of real samples and alleviates the impact caused by the inconsistent difficulty of sample classification. As a result, it enhances the fault diagnosis performance of the model when dealing with unbalanced datasets, leading to higher accuracy and F1-score values.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3