Structural damage detection and localization using a hybrid method and artificial intelligence techniques

Author:

Hoshyar Azadeh Noori1ORCID,Samali Bijan1,Liyanapathirana Ranjith2,Houshyar Afsaneh Nouri3,Yu Yang1

Affiliation:

1. Centre for Infrastructure Engineering, School of Computing, Engineering and Mathematics, Western Sydney University (WSU), Sydney, NSW, Australia

2. School of Computing, Engineering and Mathematics, Western Sydney University (WSU), Sydney, Australia

3. School of Engineering, California State Polytechnic University, Panoma, Panoma, CA, USA

Abstract

In this article, an intelligent scheme for structural damage detection and localization is introduced by implementing a hybrid method using the Hilbert–Huang transform and the wavelet transform. First, the second derivatives of the Discrete Laplacian are computed on Hilbert spectrum parameters at each frequency coordinate, and then, in order to highlight the influence of damage on signals, the data are rescaled and weighted with respect to the variance to adjust the differences in amplitude at different scales. Afterwards, the anti-symmetric extension is applied to deal with the boundary distortion phenomenon. A two-dimensional map is created using the multi two-dimensional discrete wavelet transform. This generates the coefficient matrices of level 2 approximation and horizontal, vertical and diagonal details. Horizontal detail coefficients are used to localize damages due to its sensitiveness to any perturbation. Finally, the validity of the algorithm corresponding to various damage states, the single state damage and multiple state damage, is examined through experimental analysis. The results indicate that the proposed framework can effectively localize cracks on concrete and reinforced concrete beams and can provide reliable crack localization in the presence of noise up to 5% more than the expected noise. In addition, the detection problem is mapped to machine learning tasks (support vector machine, k-nearest neighbours and ensemble methods) to automate the damage detection process. The quality of the models is evaluated and validated using the features extracted from the horizontal detail coefficients. The numerical results show that the ensemble models outperform the other models with respect to accuracy, prediction speed and training time.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3