Preparation and polishing properties of water-based magnetorheological chemical finishing fluid with high catalytic activity for single-crystal SiC

Author:

Deng Jiayun1ORCID,Lu Jiabin1,Yan Qiusheng1,Zhang Qixiang1,Pan Jisheng1

Affiliation:

1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, China

Abstract

A water-based high catalytic activity magnetorheological chemical finishing fluid (HCAMRCFF) was prepared and modified to enhance the chemical action strength in magnetorheological chemical finishing (MRCF) for single-crystal SiC. The fluid consisted of ferroferric oxide (Fe3O4) and chromium (Cr), deionized water (DW), polyethylene glycol (PEG) and oleic acid, and hydrogen peroxide (H2O2) as the composite catalyst particles, base carrier liquid, surfactants, and oxidant, respectively. HCAMRCFFs with different component concentrations were used to modify via evaluating their catalytic activity. Moreover, the MRCF experiments on SiC were conducted using the prepared HCAMRCFFs. The results show that the catalytic activity increases with an increase in the oxidant concentration. Furthermore, composite catalysts and composite surfactants can significantly improve their catalytic activity. The catalytic activity also increases with an increase in the concentration of composite catalysts. In the composite catalysts, increasing the Cr concentration can significantly enhance the catalytic performance. Composite surfactants can exert the relative superiority to enhance the catalytic activity. Compared with the unmodified finishing fluid, the catalytic activity of modified HCAMRCFF increases by 65.4%; the material removal rate (MRR) of SiC increases by 72.5% up to 635.621 nmh−1, and a surface with a roughness of 0.33 nm is obtained.

Funder

Natural Science Foundation of China-Guangdong Joint Fund Project

Guangdong Basic and Applied Basic Research Foundation

Guangzhou Science and Technology Project of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3